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PRIMARY PRESSURE WAVE IN A FLUID

AFTER ACTUATION OF A PIPELINE VALVE

UDC 532.501.32:532.511I. A. Dobodeich and Yu. P. Barmetov

This paper considers the variation in the velocity, density, and pressure of an inviscid compressible
fluid due to flow acceleration or deceleration after a change in the flow area of a valve installed on
the pipeline with rigid walls. Expressions are given for the amplitude of the primary compression or
rarefaction wave resulting form the change in flow area of the valve.
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The primary pressure wave due to the occurrence or cessation of a fluid flow (hydraulic impact) has been
the subject of extensive studies, in particular [1–3]. Unlike in these papers, in the present study, we use the analytic
solutions of the corresponding nonlinear partial differential equations obtained in our studies for various boundary
conditions.

1. Formulation of the Problems. Actuation of a valve installed in a pipeline filled with a quiescent or
moving compressible fluid gives rise to a primary wave of reduced or elevated pressure. Let us consider unsteady
isentropic flow of an inviscid compressible fluid in an inclined pipeline of constant cross section with rigid imperme-
able walls for the case of noninstantaneous actuation of the valve. It is assumed that the fluid moves at a velocity u

that depends only on the longitudinal coordinate z and time t. In this case, the continuity and dynamic equations
for continuous media [4] become

R
∂ρ

∂t
+

∂ (ρu)
∂z

= 0; (1.1)

Rρ
∂u

∂t
+ ρu

∂u

∂z
+

∂P

∂z
= RρFz; (1.2)

∂P

∂r
= RρFr; (1.3)

1
r

∂P

∂ϕ
= RρFϕ. (1.4)

Here ρ and P are the fluid density and pressure, R is the pipeline radius, r and z are the radial and longitudinal
coordinates divided by R, ϕ is the angular coordinate, ρFz, ρFr, and ρFϕ are the projections of the body force
gradient onto the z, r, and ϕ axes, respectively.

If the body forces are ignored or a vertical pipeline is considered, the right sides of Eqs. (1.3) and (1.4)
vanish and the velocity, density, and pressure of the inviscid compressible fluid do not depend on r and ϕ. In this
system (1.1), (1.2) should be supplemented by the equation of state P = f(ρ) or the equation ∂P/∂z = A2 ∂ρ/∂z

for A = const.
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Let us show that in the case of action of only gravity, i.e.,

ρFz = ρg sin θ, ρFr = ρg cos θ cos ϕ, ρFϕ = −ρg cos θ sinϕ, (1.5)

where θ is the pipeline slope to the horizon and g is the acceleration of gravity; the required quantities ρ, P , and u

are uniquely determined by system (1.1)–(1.4), despite its seeming overdetermination.
The quantity ϕ is reckoned clockwise from the direction to the vertex of the pipeline flow area, and the

coordinates z is reckoned from the valve in the direction of propagation of the pressure wave.
Below, we use the dimensionless quantities

τ =
at

R
, M =

u

a
, z∗ =

L

R
, B =

Rg sin θ

a2
, (1.6)

where L is the pipeline length and a is the sound velocity in the fluid for τ = 0, z = 0, and r = 0.
1.1. Along with Eqs. (1.1)–(1.4) and equalities (1.5), the problem of acceleration of the inviscid compressible

flow after the beginning of valve opening includes:
— the initial conditions

ρ(0, z) = ρ0(z), M(0, z) = M0(z) (1.7)

[in the particular case, M0(z) = 0];
— the boundary condition

z = 0: M(τ, 0) = f1(τ), f1(τk) ≡ Mk,0, f1(0) ≡ f1,0, (1.8)

where τ = 0 and τk correspond to the moments of the beginning and termination of valve opening;
— the conditions for the coordinate of the beginning of the primary pressure wave (PPW) front zp(τ) at

zp 6 z∗, which coincide with the initial conditions for the corresponding cross sections:

M(τ, zp) = M0(zp), ρ(τ, zp) = ρ0(zp). (1.9)

The coordinate zp(τ) for τ 6 τ2 is defined by the equation

τ =

zp∫
0

dz

1 + M0(z)
, (1.10)

and the travel time of the beginning of the PPW in the pipeline equals

τ2 =

z∗∫
0

dz

1 + M0(z)
. (1.11)

In the particular case,

zp =
{

τ, M0(zp) = 0;
z∗ = const, τ > τ2.

(1.12)

1.2. Along with Eqs. (1.1)–(1.5), the problem of deceleration the inviscid compressible flow after the
beginning of valve closure includes:

— the initial conditions (1.7) at M0(z) 6= 0;
— the boundary conditions

z = 0: M(τ, 0) = f2(τ), f2(0) ≡ M0,0, f2(τk) ≡ Mk,0. (1.13)

Here M0,0 6= 0 and τk corresponds to the moment of the completion of valve flow area reduction from the initial to
the final value; in the particular case (complete closure of the valve), Mk,0 = 0;

— the conditions for the coordinates of the beginning of the PPW front zp, which coincide with the initial
conditions for the corresponding cross sections and, formally, with conditions (1.9)–(1.12).

The nature of the functions f1(τ) and f2(τ) in conditions (1.8) and (1.13) depends on the downstream
pressure and the features of the valve (its design and response of the operating mechanism).

We find analytic solutions of Eqs. (1.1)–(1.5) subject to conditions (1.7)–(1.12) for τ 6 z∗ and with conditions
(1.9)–(1.13) and (1.7) for M0(z) 6= 0, 0 6 τ < z∗/(1 + M0,0), and 0 < |M | 6 1 for one kind of the functions f1(τ)
and f2(τ) that contain several arbitrary constants.
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2. Analytic Solutions. Differentiating (1.3) with respect to ϕ and (1.4) with respect to r, eliminating P ,
and taking into account (1.5), we obtain the equations

Rg cos θ
(
r

∂ρ

∂r
sinϕ +

∂ρ

∂ϕ
cos ϕ

)
= 0.

From this we have

ρ = ρ0,0f3(τ, z)F (x), x ≡ (Rg/a2)r cos θ cos ϕ, (2.1)

where F (x) is an arbitrary function x; ρ0,0 is the density of the inviscid compressible fluid for τ = 0, z = 0, and
r = 0. Along with (2.1), system (1.3)–(1.5) corresponds to the expression

P = ρ0,0a
2
[
f4(τ, z) + f3(τ, z)

∫
F (x) dx

]
, (2.2)

where f3 and f4 are arbitrary functions of τ and z.
Expression (2.1), which completely corresponds to system (1.3)–(1.5), does not contradict Eq. (1.1) only

for u 6= f(r, ϕ). According to (1.2) with (1.5), this implies the condition ρ−1 ∂P/∂z 6= f(r, ϕ). Therefore, expres-

sions (2.1) and (2.2) correspond to the entire system (1.1)–(1.5) only for ∂f4/∂z = 0 and
1

F (x)

∫
F (x) dx 6= f(x).

Use F (x) = exp (x/β2) for β = const. Then, system (1.1)–(1.6) reduces to the following system:

∂Φ
∂τ

+
∂M

∂z
+ M

∂Φ
∂z

= 0, Φ = ln f3(τ, z),

∂M

∂τ
+ M

∂M

∂z
= B − β2 ∂Φ

∂z
, M 6= f(r, ϕ);

(2.3)

P = a2[f4(τ)ρ0,0 + β2ρ], β = const; (2.4)

ρ = ρ0,0f3(τ, z) exp (x/β2). (2.5)

We note that expressions (2.4) and (2.5) imply that ∂P/∂z = a2β2 ∂ρ/∂z.
The conditions of the formulated problems satisfy the particular solution of system (2.3)

f3(τ, z) = C exp [(M −Bτ)/b], C = const; (2.6)

∂M

∂τ
+ (M + b)

∂M

∂z
= B, b = ±β, (2.7)

in which, according to (1.6), 0 6 B � 1 (for a horizontal pipeline, B = 0), and Eq. (2.7) is satisfied by the following
two expressions for M :

M(τ, z) = [k2 + (k3 + z)y + c0

√
h ]/T − b + By/2 (2.8)

[h = k4(k3+z)2+2k2(k3+z)y+k5T +k2
2+k4B

2T 2/4−BT (k4z+k2y), T = y2−k4, y = k1+τ, ki = const, c0 = ±1]

and

M(τ, z) = c2 + (c3 + z)/y − b + 3By/8 + c0

√
H (2.9)

[H = [(c3 + z)/y − c2 −By/8]2 + c4/y, y = c1 + 2τ, ci = const, c0 = ±1].

Substitution of expressions (2.8) and (2.9) brings Eq. (2.7) to identity. According to (2.5) and (2.6), after
finding the constant C, we obtain

ρ = ρ0,0 exp [x/b2 + (M −M0,0 −Bτ)/b]. (2.10)

These solutions supplement the solutions known for the problems of unsteady fluid flow in a pipeline [5, 6].
3. Primary Pressure Wave Due to Acceleration of Inviscid Compressible Flow after Valve

Opening. In this case, if the directions of the PPW and the inviscid compressible flow coincide, M > 0 and b > 0,
which corresponds to the initial stage of pipeline filling. If the directions of the PPW and the inviscid compressible
flows are opposite, then M < 0 and b > 0 (beginning of pipeline evacuation).
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Fig. 1. Possible velocity distributions at the valve during its opening.

Expressions (2.4), (2.8), and (2.10) are the solution of the problem (1.1)–(1.5) subject to the conditions
(1.7)–(1.10), z < z∗, τ < τ∗, and

f1(τ) = By/2− b + (k2 + k3y + c0

√
h0 )/T, (3.1)

where h0 = 2k2k3y + k2
3k4 + k5T + k2

2 + BT (Bk4T/4− k2y), and if the initial conditions ρ0(z) and M0(z) in (1.7)
satisfy the relation

ρ0(z) = ρ0,0 exp [(M0(z)−M0,0)/b]. (3.2)

Some of the constants in expressions (2.8) and (3.1) are found from condition (1.9) taking into account (1.10).
For example, for M0(z) = 0, according to (3.2), we have ρ0(z) = ρ0,0, which, from physical considerations, is possible
under gravity only for B = 0. In this case,

b = 1, k5 = (k3 − k1)2 − k4 − 2k2. (3.3)

These relations also satisfy condition (1.7) and are obtained after the substitution z = zp, zp = τ , and M = 0
in (2.8).

For τ 6 τk, the coordinate of the end of the PPW front z1 is zero, and for τk < τ 6 z∗,

z1 =

τ∫
τk

(1 + M) dτ ≈ (1 + Mk,0)(τ − τk). (3.4)

According to (2.4) and (2.10), the PPW amplitude in an inviscid compressible fluid is equal to

AD = E exp
( x

b2
− Bτ

b

)[
exp

(M(τ, z1)
b

)
− exp

(M0(zp)
b

)]
,

where AD = P (τ, z1) − P (τ, zp) and E = ρ0,0a
2b2. The amplitude depends on z, τk, Mk,0, and on the constant

included in expressions (2.8) and (3.1).
It is evident that expression (3.1) contains several integration constants. By varying them, it is possible to

find a solution of the problem for a wide range of boundary conditions (also nonarbitrary) f1(τ) in (1.8).
For example, it is possible to uniquely relate the constants k1, . . . , k4 to the values of M(τk, 0), M(τk/2, 0)

and the derivative M with respect to τ at the points z = 0, τ = 0 and z = 0, τ = τk, i.e., to the properties and
actuation regime of the valve and the downstream pressure. Figure 1 gives plots of the functions f1(τ)/|f1(τk)|
calculated for b = 1, c0 = 1, B = 0, M0(z) = 0, and a zero derivative of M with respect to τ for z = 0 and
τ = τk [i.e., under the assumption of a smooth variation of the function f1(τ) in the stage of completion of valve
opening and the condition f1(τ > τk) = const for τ < z∗]. In particular, curve 1 is plotted for k1 = 3.95, k2 = 3.96,
k3 = 0.178, k4 = −0.198, and k5 = −0.159, and curve 2 is plotted for k1 = 213.05, k2 = −3.626 · 104, k3 = 170.86,
k4 = 4.523 · 104, and k5 = 2.91 · 104.

For M < 0 and conditions (1.7), the initial segment of the PPW front propagates against the flow moving
at velocity M0(z) and the final segment propagates against the flow with a larger modulus of the velocity Mk,0.
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Fig. 2. Possible velocity distributions at the valve during its closure.

Therefore the time of travel of the final segment to a certain cross section z is larger than that for the initial segment
of the PPW front.

Generally, for τk 6 τ 6 z∗, the length of the PPW front is defined as

zp − z1 ≈ τ(1 + M0,0)− (τ − τk)(1 + Mk,0), (3.5)

and for τk > z∗/(1 + M0,0), it equals z∗.
According to (3.5), for τ 6 z∗, the PPW propagation in the pipeline due to valve opening is accompanied

by extension of the PPW front for M < 0 and by compression for M > 0.
4. Primary Pressure Wave for Flow Deceleration due to Valve Closure. In the case where the

PPW propagates over an inviscid compressible flow, M > 0 and b > 0 (the beginning of termination of pipeline
filling). If the propagation directions of the PPW and the flows are opposite, then M < 0 and b > 0 (a hydraulic
impact due to termination of the inviscid compressible flow from the pipeline takes place).

Expressions (2.4), (2.9), and (2.10) are the solution of the problem (1.1)–(1.6) subject to conditions (1.7),
(1.9)–(1.13), (3.2), z 6 z∗, τ 6 z∗/(1 + M0,0), and

f2(τ) = c2 + c3/y + 3By/8− b + c0

√
(c3/y − c2 −By/8)2 + c4/y.

The constant c4 is found from condition (1.12) for τ = τk:

c4 = (Mk,0 + b)[(Mk,0 + b− 2c2)yk − 3By2
k/4− 2c3] + (4c2 + Byk)(c3 + By2

k/8),

where yk = 2τk + c1.
The constants c1 and c3 are determined from condition (1.9) with allowance for (3.3). For example, for

ρ0(z) = ρ0(0) and M0(z) = M0,0 (which is possible only in a horizontal pipeline), we have B = 0 and, according to
(1.10), zp = τ(1+M0,0). Substituting z = zp and M = M0,0 into equality (2.9), we obtain the equation for τ , which
becomes identity for various τ if the sums of terms proportional to τ and terms independent of τ are set equal to
zero, i.e., if the following conditions are satisfied:

(1− b)(2c2 − b−M0,0) = 0, c4 = (2c3 − c1 − c1M0,0)(2c2 − b−M0,0).

Figure 2 gives plots of the functions f2(τ)/|f2(0)| calculated for b = 1 and c0 = 1 and constants c1 = 0.562,
c2 = 0.577, c3 = −0.188, and c4 = −0.236 (curve 1) and c1 = −13.103, c2 = −5.562, c3 = −61.841, and
c4 = 676.962 (curve 2) for which expressions (2.4) and (3.1) are the solution of the problem (1.1)–(1.5), (1.7),
(1.9)–(1.13).

According to (2.4), (2.9), and (2.10) for each value of z 6 z∗, the amplitude of the primary pressure wave is
given by

AD = E exp
(f2(τ)−M0,0

b
+

x

b2
− B

b
τ
)
[1− exp (DM)], (4.1)

where AD = P (τ, 0)− P (τ, z), DM = (M − f2(τ))/b, and E = ρ0,0a
2b2.
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For B = 0,

DM =
1
b

[z

y
±

√(c3 + z

y
− c2

)2

+
c4

y
∓

√(c3

y
− c2

)2

+
c4

y

]
. (4.2)

In the case M < 0 and b > 0 (hydraulic impact), the coordinate of the beginning of the PPW front zp is determined
according to (1.10) and (1.11). In particular, if M0(z) = M0,0, then

zp = τ(1 + M0,0), τ2 = z∗/(1 + M0,0).

For τ 6 τk, the coordinate of the end of the PPW front z1 is equal to zero, and for τk < τ 6 τ2 it is
determined according to (3.4).

Therefore, for τ2 6 τk the length of the PPW front is zp − z2 = z∗. For f2(τk) = 0 (complete valve closure)
and τk < τ2, the length of the PPW front is zp − z2 ≈ τM0,0 + τk.

The amplitude of the primary pressure wave is maximum for τk 6 τ2 and f2(τk) = 0, and at the time τ = τk,
it reaches the value

ADmax = E exp
( x

b2
− B

b
τk

)[
exp

(
− M0,0

b

)
− 1

]
. (4.3)

For τk > τ2, AD is maximum at the time τ = τ2, reaching the value

ADmax = E exp
( x

b2
− B

b
τ2

)[
exp

(f2(τ2)−M0,0

b

)
− 1

]
. (4.4)

From (4.3) it follows that as a first approximation for B = 0, |M0,0| � 1, x = 0 and M0,0 < 0 (the PPW for
valve closure), we have

ADmax = exp
(
− M0,0

b

)
ρ0,0a|u0,0|b

[
1 +

1
2b

M0,0 +
1

6b2
(M0,0)2 + . . .

]
. (4.5)

This value is close to the result ADmax = ρ0,0a|u0,0| obtained by Joukowski [1] for b = 1 and the conditions of
validity of formula (4.5) using a different method [taking into account the compliance of the pipeline walls and
assuming a linear decrease in the velocity u(0, t) or instantaneous blocking of the pipeline] without using Eqs. (1.1),
(1.3), and (1.4).

An analysis of expressions (4.1)–(4.4) shows that at the moment of closure of a gate or a valve installed in
a pipeline with rigid walls, the PPW amplitude:

— is proportional to ρ0,0a;
— increases with increase in the difference between the final (at the moment of completion of valve opera-

tion τk) and initial velocities at the valve;
— has a maximum at the time when Mk,0 = 0;
— does not depend on the operation time τk and z if τk 6 τ2 and θ = 0;
— decreases considerably with increase in f2(τ2) if τk > τ2, i.e., depends on the duration and nature of valve

closure and downstream pressure.
Since these conclusions are consistent with the well-known experimental data [1], the assumptions used in

the formulation of the problem are of little significance.
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